Eigenvalue inequalities for graphs and convex subgraphs
نویسندگان
چکیده
For an induced subgraph S of a graph, we show that its Neumann eigenvalue λS can be lower-bounded by using the heat kernel Ht(x, y) of the subgraph. Namely, λS ≥ 1 2t ∑ x∈S inf y∈S Ht(x, y) √ dx √ dy where dx denotes the degree of the vertex x. In particular, we derive lower bounds of eigenvalues for convex subgraphs which consist of lattice points in an d-dimensional Riemannian manifolds M with convex boundary. The techniques involve both the (discrete) heat kernels of graphs and improved estimates of the (continuous) heat kernels of Riemannian manifolds. We prove eigenvalue lower bounds for convex subgraphs of the form cǫ/(dD(M)) where ǫ denotes the distance between two closest lattice points, D(M) denotes the diameter of the manifold M and c is a constant (independent of the dimension d and the number of vertices in S, but depending on the how “dense” the lattice points are). This eigenvalue bound is useful for bounding the rates of convergence for various random walk problems. Since many enumeration problems can be approximated by considering random walks in convex subgraphs of some appropriate host graph, the eigenvalue inequalities here have many applications.
منابع مشابه
Bipartite Subgraphs and the Signless Laplacian Matrix
For a connected graph G, we derive tight inequalities relating the smallest signless Laplacian eigenvalue to the largest normalised Laplacian eigenvalue. We investigate how vectors yielding small values of the Rayleigh quotient for the signless Laplacian matrix can be used to identify bipartite subgraphs. Our results are applied to some graphs with degree sequences approximately following a pow...
متن کاملFinding Planted Subgraphs with Few Eigenvalues using the Schur-Horn Relaxation
Extracting structured subgraphs inside large graphs – often known as the planted subgraph problem – is a fundamental question that arises in a range of application domains. This problem is NP-hard in general, and as a result, significant efforts have been directed towards the development of tractable procedures that succeed on specific families of problem instances. We propose a new computation...
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملPolynomial reconstruction of signed graphs whose least eigenvalue is close to -2
The polynomial reconstruction problem for simple graphs has been considered in the literature for more than forty years and is not yet resolved except for some special classes of graphs. Recently, the same problem has been put forward for signed graphs. Here, the reconstruction of the characteristic polynomial of signed graphs whose vertex-deleted subgraphs have least eigenvalue greater than −2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005